

AIR QUALITY MANAGEMENT PLAN 2024 2nd Generation Plan

DOCUMENT CONTROL

Version:	
Status:	Final
Review date:	After five years or as required
Executive Director:	Zukiswa Mandlana – Community Services and Health
Email:	Zukiswa.Mandlana@capetown.gov.za
Tel:	021 400 4912

Making progress possible. Together.

Table of Contents

ABB	REVIATIONSi
DEF	NITIONS AND TERMINOLOGYii
EXE	CUTIVE SUMMARYiv
1	BACKGROUND AND CONTEXT1
2	VISION AND MISSION STATEMENTS
3	DESIRED OUTCOMES
4	PRINCIPLES FOR AIR QUALITY MANAGEMENT12
5	STRATEGIC INTENT AND POLICY ALIGNMENT
6	REGULATORY CONTEXT
7	PLAN PARAMETERS
8	ROLE PLAYERS AND STAKEHOLDERS
9	PLAN DIRECTIVES: GOALS AND OBJECTIVES
10	IMPLEMENTATION PROGRAMME
11	SITUATIONAL ASSESSMENT

ANNEXURES

ANNEXURE A: PARTICULATE MATTER ≤10 (PM10) MICRONS TREND GRAPHS ANNEXURE B: NITROGEN DIOXIDE (NO2) TREND GRAPHS ANNEXURE C: DIURNAL TREND GRAPHS

FIGURES

Figure 1: Locality map of the City of Cape Town in the Western Cape Province

Figure 2: Cape Town Gross Population per square kilometre

Figure 3: Cape Town Socio Economic Index

Figure 4: Cape Town Topography and major transport routes and suburbs

Figure 5: Air Quality Monitoring Station Network

Figure 6: Industrial Zoning and AQM Listed Activities, Monitoring Stations, Fuel Burning Equipment and Listed Activities Fuel Burning Equipment

Figure 7: Environmental governance cycle for continued improvements in environmental quality

Figure 8: Annual PM₁₀ averages, 2010-2021

Figure 9: Annual SO₂ averages, 2010-2021

Figure 10: Annual NO₂ averages, 2010-2021

Figure 11: Percentage of total daily traffic counts

TABLES

Table 1: Pollutants monitored at City of Cape Town Ambient Air Quality Monitoring Station Network Table 2: The South African National Ambient Air Quality Standards (NAAQS)

ABBREVIATIONS

- AEL Atmospheric Emission Licence
- AQM Air Quality Management
- AQMP Air Quality Management Plan
- **AQO** Air Quality Officer
- C6H6 Benzene
- **CCT** City of Cape Town
- CH₄ Methane
- **CO** Carbon Monoxide
- **CO2** Carbon Dioxide
- CTBHS Cape Town Brown Haze Study
- DEA&DP Department of Environmental Affairs and Development Planning
- DFFE National Department of Forestry, Fisheries and the Environment
- EMI Environmental Management Inspector
- GHG Greenhouse Gas
- **GN** Government Notice
- GVA Gross Value Added
- H₂S Hydrogen Sulphide
- HVAC Heating, Ventilation, and Air Conditioning
- IDP Integrated Development Plan
- IPC Inter-modal Planning Committees
- **ISO** International Organization for Standardisation
- µ Micro or micrograms
- MEC Member of the Executive Council
- N_2O Nitrous Oxide
- NAAQS National Ambient Air Quality Standards
- NAEIS National Atmospheric Emissions Inventory System
- NCC National Coordination Committee
- NEM: AQA National Environment Management: Air Quality Act, 2004 (Act No. 39 of 2004)
- NEMA National Environmental Management Act, 1998 (Act No. 107 of 1998)
- NO₂ Nitrogen Dioxide
- NO_x Nitric Oxides
- O3 Ozone
- PAEL Provisional Atmospheric Emission Licence
- PM Particulate Matter
- \textbf{PM}_{10} Particulate matter with an aerodynamic diameter of 10 μm and smaller
- PM2.5 Particulate matter with an aerodynamic diameter of 2.5µm and smaller

ppb Parts per billion ppm Parts per million **PPP** Public Participation Process SAAELIP South African Atmospheric Emission Licensing and Inventory Portal SAAQIS South African Air Quality Information System **SANAS** South African National Accreditation System **SANS** South African National Standards SAQP Senior Air Quality Practitioner SEA Strategic Environmental Assessment SEMA Specific Environmental Management Act **SNAEL** System National Atmospheric Emission Licensing SO2 Sulphur Dioxide **SOP** Standard Operating Procedure StatsSA Statistics South Africa **UNFCCC** United Nations Framework Convention on Climate Change **US EPA** United States Environmental Protection Agency **VOCs** Volatile Organic Compounds **VPUU** Violence Prevention through Urban Upgrading WHO World Health Organisation

DEFINITIONS AND TERMINOLOGY

"Air Quality Act" means the National Environmental Management: Air Quality Act, 2004 (Act No. 39 of 2004);

"adverse effect" means any actual or potential impact on the environment that impairs or would impair the environment or any aspect of it to an extent that is more than trivial or insignificant;

"air pollutant" includes any dust, smoke, fumes or gas that causes or may cause air pollution;

"air pollution" means any change in the environment caused by any substance emitted into the atmosphere from any activity, where that change has an adverse effect on human health or well-being or on the composition, resilience and productivity of natural or managed ecosystems, or on materials useful to people, or will have such an effect in the future;

"air quality management plan" means the air quality management plan referred to in section 15 of the Air Quality Act;

"air quality officer" means the air quality officer designated as such in terms of section 14(3) of the Air Quality Act;

"ambient air" means "ambient air" as defined in section 1 of the Air Quality Act;

"atmosphere" means air that is not enclosed by a building, machine, chimney or other similar structure;

"**atmospheric emission**" or "**emission**" means any emission or entrainment process emanating from a point, non-point or mobile source, as defined in the Air Quality Act that results in air pollution;

"best practicable environmental option" means the option that provides the most benefit, or causes the least damage to the environment as a whole, at a cost acceptable in the long term as well as in the short term;

"**City**" means the City of Cape Town established by Provincial Notice No. 479 of 2000 in terms of section 12 of the Local Government: Municipal Structures Act, 1998 (Act No. 117 of 1998) or any structure or employee of the City acting in terms of delegated authority;

"climate forcings" are different factors that affect the Earth's climate. These "forcings" drive or "force" the climate system to change.

"Council" means the Municipal Council of the City;

"duty of care" requires that any person who is wholly or partially responsible for causing air pollution or creating a risk of air pollution occurring must take all reasonable measures including the best practicable environmental option-

(a) to prevent any potential significant air pollution from occurring; and

(b) to mitigate and, as far as reasonably possible, remedy the environmental impacts and consequences of any air pollution that has occurred.

"environment" means the surroundings within which humans exist and that are made up of—

(a) the land, water and atmosphere of the earth;

(b) micro-organisms, plant and animal life;

(c) any part or combination of (a) and (b) and the interrelationships among and between them; and

(d) the physical, chemical, aesthetic and cultural properties and conditions of the foregoing that influence human health and well-being;

"frequency of exceedance" means the permissible number of ambient air quality standard pollutant exceedances at a monitoring station allowed by law for a given time period;

"**living organism**" means any biological entity capable of transferring or replicating genetic material, including sterile organisms and viruses;

"Municipal Systems Act" means the Local Government: Municipal Systems Act, 2000, (Act No. 32 of 2000);

"Provincial Government" means the Provincial Government of the Western Cape.

Air Quality Management Plan

2nd Generation

The purpose of this plan is to ensure that clean air is achieved and maintained in the City over the next 10 to 20 years. It contains the vision, mission, objectives, and activities that are needed to achieve this.

The City of Cape Town's Air Quality Management Vision

TO BE A CITY THAT ENSURES CLEAN AIR FOR ALL.

The City of Cape Town's Air Quality Management Mission

TO REDUCE THE HEALTH EFFECTS OF POOR AIR QUALITY FOR ALL IN CAPE TOWN.

The Second Generation Plan has four (4) goals and seventeen (17) enabling objectives which will assist in achieving the vision and mission for air quality management for the City of Cape Town for the short, medium and long term:

- GOAL 1: Reduce harmful greenhouse gas emissions through supporting air quality and climate change response programmes
- GOAL 2: Ensure effective and consistent air quality management, linked to climate change response
- GOAL 3: Raise awareness with respect to air quality management and climate change response
- GOAL 4: Increase compliance through effective and consistent air quality compliance, monitoring and enforcement

CONTENT OF THE PLAN

Clause	Purpose/Overview			
1. Background and context	Provides an overview of the impact of air pollution on human health and the current state of air quality in the City of Cape Town and outlines the main challenges that the City currently faces in this regard. This clause can be read in conjunction with the more detailed situational assessment in clause 11.			
2. Vision and Mission Statements	The main vision and mission of the Plan as discussed above.			
3. Desired Outcomes	Implementing the Plan including related Goals and Objectives in pursuance of the Vision and Mission of the Plan.			
4. Principles for Air	The Plan and related activities are underpinned by a key set of principles as			
Quality Management	discussed above.			
5. Strategic Intent and	Discusses the alignment and links with relevant local, provincial, national and			
Policy Alignment	international strategies, plans and policies.			
6. Regulatory Context	Sets out the legal context of the Plan, including legislative requirements from			
	the Constitution to relevant local by-laws.			
7. Plan Parameters	Outlines the application of the Plan (see below).			
8. Role Players and	The Plan requires a whole of government and society approach to improve air			
Stakeholders	quality. This section outlines the main role players and stakeholders including the aspects of the Plan that are relevant to them.			
9. Plan Directives:	In order to achieve the overall goals and objectives of the Plan a list of activities			
Goals and Objectives	is outlined including responsible City departments, time-line, dependencies			
	and the desired outcomes for each activity.			
10. Implementation	Discusses the overarching approach to achieving effective control of air			
Programme	quality. The implementation of the activities contained in the Plan including			
	due consideration being given to the monitoring and evaluation of the			
	outcomes and impacts of the activities.			
11. Situational	Assesses monitored air quality and pollution trends against National Ambient Air			
Assessment	Quality Standards.			

ROLES AND RESPONSIBILITIES

Local government:	Transversal action is required to achieve improved air quality including				
City of Cape Town	addressing upstream and downstream pollution sources that various City				
	departments regulate or manage.				
Provincial and	Provincial government provides oversight as well as support and guidance to				
National Government	local air quality management services. National government provides the				
	overall regulatory framework as well as coordinating and oversight functions.				
Business, Industry and	Business, industry and the general public play a critical role in reducing air				
the General Public	pollution and working in partnership with government to improve overall air				
	quality.				

PLAN PARAMETERS

This document fulfils the purpose of the City of Cape Town's Air Quality Management Plan as contemplated in Section 15(2) of the National Environmental Management: Air Quality Act, 2004 (Act No. 39 of 2004). Parameters of the Plan are:

- The Plan applies city-wide.
- The Plan seeks to provide a transversal approach to Air Quality Management related challenges facing the city.
- The Plan is guided and implemented through the Air Quality Act, its regulations and the City of Cape Town Air Quality Management By-law, 2016.
- The Plan has transversal implications and requires various directorates to work collaboratively to realise the vision, mission, goals and objectives of the Plan.

1 BACKGROUND AND CONTEXT

1.1 Impacts of Air Quality

The World Health Organisation (WHO) has recognised that air pollution kills an estimated seven million people worldwide every year. "WHO data shows that 9 out of 10 people breathe air that exceeds WHO guideline limits containing high levels of pollutants, with low- and middle-income countries suffering from the highest exposures".

"From smog hanging over cities to smoke inside the home, air pollution poses a major threat to health and climate. The combined effects of ambient (outdoor) and household air pollution cause about seven million premature deaths every year, largely as a result of increased mortality from stroke, heart disease, chronic obstructive pulmonary disease, lung cancer and acute respiratory infections" (https://www.who.int/health-topics/air-pollution).

Due to the multiple known risks of air pollution, the National Department of Forestry, Fisheries and the Environment (DFFE) has identified certain pollutants which may have a detrimental effect on the environment and the health of individuals. The pollutants are called criteria air pollutants, as listed below:

- i. PM₁₀ suspended particles smaller than 10 microns in diameter, also called inhalable particulate matter;
- ii. PM_{2.5} suspended particles smaller than 2.5 microns in diameter. The ultrafine fraction of particulate matter;
- iii. Sulphur Dioxide (SO₂);
- iv. Nitrogen Dioxide (NO₂);
- v. Ozone (O₃);
- vi. Hydrogen Sulphide (H₂S) (odour threshold only);
- vii. Carbon Monoxide (CO);
- viii. Benzene (C₆H₆); and
- ix. Lead (Pb).

Cape Town is not excluded from the impacts of air pollution. The main cause of the Cape Town Brown Haze is fine and ultra-fine particulate matter, Volatile Organic Compounds (VOC) and Nitric Oxides (NO_x) emissions from transport, biomass burning, industrial, and domestic sources. These pollutants are known to cause a health risk if inhaled at high concentrations for long periods. Every year during the period from May to September, Cape Town experiences episodes of visible pollution, which are associated with stable atmospheric conditions and low-level inversions. These conditions give rise to visible brown haze, which has been a cause for concern for many years.

Existing levels of ambient air pollution in Cape Town have the following main impacts:

- i. Poor visibility especially during the 'Brown Haze' episodes;
- ii. Climate change inducing impacts due to greenhouse gas (GHG) emissions i.e. Carbon Dioxide (CO₂), Methane (CH₄), Nitrous Oxide (NO) and short lived climate forcing agents e.g. black carbon;
- iii. Risks to human health and well-being and environment noting that more research is needed to understand the specific impact on vulnerable groups in the City of Cape Town;
- iv. Disproportionate health and other impacts on residents in dense low-income areas;
- v. Reduced tourism;
- vi. Reduced quality of the environment in which to live; and
- vii. GHGs contributing to climate change.

Due to the above problem statements, it is essential that the City develops and implements a thorough and evidence based air quality management plan.

1.2 Cape Town socio economic overview

The City of Cape Town is the only metropolitan municipality in the Western Cape and together with twenty three other local municipalities and the five other district municipalities forms part of the Western Cape provincial structure as shown in the locality map in **Figure 1**.

Figure 1: Locality map of the City of Cape Town in the Western Cape Province

Cape Town hosts approximately 64.1% of the population of the Western Cape Province. The population of Cape Town was 3 740 026 in 2011 (2011 Census, StatsSA) and has seen steady growth with an estimated population of 4 678 900 in the 2021 mid-year population estimates (StatsSA) which equates to an increase of 25.1% since 2011. It is projected that the population of Cape Town will grow to at least 5.8 million in the year 2040 (according to City of Cape Town, 2017 - Cape Town Population Projections 2016 to 2040).

The population density and the coverage of the ambient air quality monitoring stations in relation to populated areas within the boundaries of the City is shown in the map in **Figure 2.** In 2020, finance, insurance, real estate and business services constituted 40.1% of economic activity in the CCT (*GVA contribution*), followed by community services (19.2%), trade and hospitality (13.1%) and manufacturing (12.7%) (IHS Markit, 2021).

The socio economic footprint and index of the City and the location of the ambient air quality monitoring stations in relation to the different zoning and economic activities in the City is shown in the map in **Figure 3**.

1.3 Cape Town Climate, Weather Patterns, Meteorological Characteristics and Topography that affect air pollution

Cape Town has a warm Mediterranean climate with mild, moderately wet winters and dry, warm summers. Winter, which lasts from the beginning of June to the end of August, may see large cold fronts entering for limited periods from the Atlantic Ocean with significant precipitation and strong north-westerly winds. Winter months in the city average a maximum of 18 °C and minimum of 8.5 °C. Total annual rainfall in the city averages 515 millimetres although in the southern suburbs, close to the mountains e.g. in the Newlands area rainfall is significantly higher and averages closer to 1 000 millimetres.

Summer, which lasts from December to March, is warm and dry with an average maximum of 26 °C and minimum of 16 °C. The region can get uncomfortably hot when the Berg Wind, meaning "mountain wind", blows from the Karoo interior for a couple of weeks in February or March. Spring and summer generally feature a strong wind from the south-east, known locally as the 'South-Easter' or the 'Cape Doctor', so called because it blows air pollution away. This wind is caused by a high-pressure system, which sits in the South Atlantic to the west of Cape Town, known as the South Atlantic High. Cape Town receives 3 100 hours of sunshine per year, which contributes to ground level ozone formation.

It is well known that meteorological conditions in the Greater Cape Town region follow complicated patterns, due to various topographical influences such as Table Mountain and the two oceans (Dracoulides, 1994. Air Pollution Modelling for the Greater Cape Town Region. Energy Research Institute, University of Cape Town) as shown in the topographical map of Cape Town in **Figure 4**.

Figure 2: Cape Town Socio Economic Index.

Figure 4: Cape Town Topography and major transport routes and suburbs

According to Dracoulides (1994: 2-18), measured meteorological parameters at one weather station do not represent the entire area under all atmospheric conditions.

The Cape Town Brown Haze Study (Wicking-Baird, M C, de Villiers, M G & Dutkiewicz, R K 1997. Cape Town Brown Haze study. GEN 182, Energy Research Institute, University of Cape Town, Cape Town) suggests that ambient pollutant concentrations are strongly dependent on the atmosphere into which they are emitted. The meteorological factors that affect air pollutant concentrations in the lower atmosphere are wind velocity, vertical temperature profile and mechanical turbulence. These factors together with the rate and height of emissions govern the ambient pollutant concentrations.

In general, Cape Town meteorology can be summarised by four typical synoptic patterns for the Southern African subcontinent. The summer months are characterised by a high south-easterly airflow which is caused by a ridging anticyclone over the south Atlantic. This results in high wind velocities and consequently high atmospheric turbulence, which dilutes and disperses pollutants efficiently.

During the winter months, the wind is generally from the north-west. This is caused by a pre-frontal system that also causes low temperatures and overcast conditions. The high wind velocity performs a diluting function on pollutants in the area. During early spring and late winter, Cape Town experiences brown haze episodes in the Cape Town region under conditions of strong overnight temperature inversions usually associated with light berg wind conditions, ahead of migrating coastal lows.

Stagnant atmospheric conditions also exist whereby an anticyclone results in light variable winds and an elevated temperature inversion, which have the potential to result in pollution episodes due to insufficient airflow to dilute pollutants (Wicking-Baird 1997: 15).

Furthermore, climate change risks may increase air pollution through the following mechanisms:

- i. Drought and decreased rainfall, leading to increased dust due to dry soil conditions and reduced vegetation cover;
- ii. Increased fire risk, leading to additional pollution from fire events (smoke, ash, and other particulate matter);
- iii. Increased heat, leading to increased production of ground level ozone; and
- iv. Increased wind speeds, causing greater dispersion of pollutants but also leading to more dust and other particulate matter being carried by wind.

It is also important to note that these climate risks may all occur at the same time (i.e. hot, dry, and windy conditions that increase fire risk).

1.4 The air pollution situation in Cape Town

The cleansing effects of the 'South-Easter' or 'Cape Doctor' are well known. Nevertheless, the City periodically experiences visible pollution episodes - the 'Brown Haze' - as well as high levels of other

pollutants, which are known to affect human and ecological health. In order to address air quality matters, the City compiled a detailed Situation Assessment of Air Quality in 2005, which identified the priority pollutants, sources, impact areas of air pollution, as well as a possible future approach to air quality management. The findings, recommendations and action plans of the Situation Assessment have been incorporated into the Air Quality Management Plan.

Air Quality monitoring data for a range of pollutants **(Table 1)** are monitored at 13 Air Quality Monitoring stations located throughout the City **(Figure 5)**.

AQM Station	Parameters					
Athlone	SO_2 – This station is currently being upgraded.					
Atlantis	SO ₂ , NO _x , O ₃ and full meteorological parameters.					
Bellville South	PM10, SO2, and full meteorological parameters.					
Bothasig	SO ₂ , NO _x , and full meteorological parameters.					
Foreshore	PM ₁₀ , PM _{2.5} , SO ₂ and VOCs. This station has since beer decommissioned.					
Goodwood	PM_{10} , SO_2 , NO_x , O_3 , CO , and full meteorological parameters.					
Khayelitsha PM10, PM2.5, SO2, NOx, VOC, and full meteorological parameters.						
Molteno	NO _x and O ₃ .					
Plattekloof	PM ₁₀ , SO ₂ , NO _x and O ₃ .					
Potsdam	VOCs.					
Somerset West	SO ₂ and full meteorological parameters.					
Tableview	PM ₁₀ , PM _{2.5} , SO ₂ , NO _x , and full meteorological parameters.					
Wallacedene	PM_{10} , SO_2 , NO_x , O_3 , and full meteorological parameters.					

Note: Lead is no longer monitored since it has been removed from petroleum products.

Table 1: Pollutants monitored at City of Cape Town Ambient Air Quality Monitoring Station Network

Ambient Air Quality Monitoring stations are located in areas known to be impacted by transport, industrial and domestic activities. **Figure 6** shows that the air pollution 'Hot Spot' areas of Cape Town include:

include:

- i. Household fuel burning areas, particularly but not exclusively dense low-income settlements such as Khayelitsha and Wallacedene due to high particulate concentrations associated with fuel burning, transport and windblown dust from unpaved and exposed area sources;
- ii. The Central Business Districts and residential areas transected by highways, on-ramps and main feeder roads;
- iii. Residential areas close to industrial areas such as Bellville South and Milnerton;
- iv. Residential areas close to Cape Town International Airport;
- v. The Port of Cape Town; and
- vi. Open cast mines and quarries which contribute significantly to ambient dust fallout.

Sustainable long term improvements to air quality require improvement in the areas of industrial pollution, vehicle emissions, fuel quality, integrated transport planning, public transport, community education and participation by all stakeholders. Moreover, the City needs to continue to develop and enhance partnerships through cooperative governance, industry and communities to be successful in each of these spheres.

Figure 5: Air Quality Monitoring Station Network

Figure 6: Industrial Zoning and AQM Listed Activities, Monitoring Stations, Fuel Burning Equipment and

Listed Activities Fuel Burning Equipment

2 VISION AND MISSION STATEMENTS

2.1 The City of Cape Town's Air Quality Management Vision

TO BE A CITY THAT ENSURES CLEAN AIR FOR ALL.

2.2 The City of Cape Town's Air Quality Management Mission

TO REDUCE THE HEALTH EFFECTS OF POOR AIR QUALITY FOR ALL IN CAPE TOWN.

3 DESIRED OUTCOMES

- **3.1** The City of Cape Town's AQMP clarifies the vision and mission for air quality management and the principles (see **clause 5**) which will underpin future actions.
- 3.2 The City will strive for an environment where there is excellent air quality in all areas of Cape Town, and health impacts of air pollution due to poor air quality are mitigated through the set of Goals and Objectives detailed in the AQMP see below summary (detailed linked activities are captured in clause 6):

GOAL 1: REDUCE HARMFUL GHG EMISSIONS THROUGH SUPPORTING AIR QUALITY AND CLIMATE CHANGE RESPONSE PROGRAMMES

- Objective 1.1: To improve air quality in dense low-income settlements.
- Objective 1.2: To reduce and manage landfill emissions.
- Objective 1.3: To reduce and manage emissions from waste water infrastructure.
- Objective 1.4: To reduce and control vehicle emissions in the City.
- Objective 1.5: To support sustainable transport planning initiatives.
- Objective 1.6: To support climate friendly procurement in the City.
- Objective 1.7: To support National, Provincial and Local programmes to reduce GHG and the associated carbon footprint.

GOAL 2: ENSURE EFFECTIVE AND CONSISTENT AIR QUALITY MANAGEMENT, LINKED TO CLIMATE CHANGE RESPONSE

- Objective 2.1: To maintain and enhance the Air Quality Management System for the City of Cape Town.
- Objective 2.2: To develop and implement mechanisms and systems to attain compliance with national ambient air quality standards.
- Objective 2.3: To monitor criteria air pollutants which, through ambient concentrations, deposition or in any other way, present a threat to health, well-being or the environment.

GOAL 3: RAISE AWARENESS WITH RESPECT TO AIR QUALITY MANAGEMENT AND CLIMATE CHANGE RESPONSE

- Objective 3.1: To support research efforts to determine the extent of detrimental health effects of poor air quality on the population of Cape Town.
- Objective 3.2: To expand upon existing education and awareness activities and to provide a comprehensive and sustainable awareness and communication programme for Air Quality Management.

GOAL 4: INCREASE COMPLIANCE THROUGH EFFECTIVE AND CONSISTENT AIR QUALITY COMPLIANCE MONITORING AND ENFORCEMENT

- Objective 4.1: To enforce current and future legislation for Air Quality Management.
- Objective 4.2: To strengthen and build capacity in air quality management and compliance and enforcement.
- Objective 4.3: To conduct annual compliance monitoring and enforcement of Listed Activities.
- Objective 4.4: To support City Departments and facilities in maintaining environmental compliance.
- Objective 4.5: To ensure NEMA Section 30 incidents which impact on air quality are investigated and reported.

4 PRINCIPLES FOR AIR QUALITY MANAGEMENT

The City of Cape Town's approach to air quality management is underpinned by the following set of overarching principles:

4.1 Capacity-building and education

All people must have the opportunity to develop their understanding, skills and capacity for effective participation in achieving sustainable development and sustainable use of air as a resource, to maximise the opportunity of communities to maintain a healthy lifestyle.

4.2 Duty-of-care

Any person or institution that generates air pollution is accountable for the management of this pollution and should be penalised appropriately for transgressions committed.

4.3 Environmental justice

The City must integrate environmental considerations, including air quality considerations, with social, political, economic justice and development in addressing the needs and rights of all communities, sectors and individuals. Integrated planning and environmental management provides the incentive for the integration of air quality issues into transportation and land use planning processes. Improved air quality and associated health outcomes is a key part of the discussion around South Africa's just transition to a carbon neutral and climate resilient future.

4.4 Polluter pays

The full cost associated with pollution (including monitoring, management, clean up and supervision) should be met by the organisations or persons responsible for the source of the pollution.

4.5 Pollution prevention

Measures must continue to be taken to reduce emissions at the source (i.e. source-based controls).

4.6 Public participation

Public participation is necessary for the effective integration of the public's views into the AQMP development and impact assessment processes.

4.7 Preventing, minimising, and mitigating environmental impacts

This includes a specific directive that the City will work towards excellent air quality levels in all areas of the city, and significant reductions in ill health attributable to poor air quality.

The City aligns with the environmental governance cycle shown in Figure 7 for continued improvements in environmental quality as legislated in the 2017 National Framework for Air Quality Management in the Republic of South Africa.

Figure 7: Environmental governance cycle for continued improvements in environmental quality

5 STRATEGIC INTENT AND POLICY ALIGNMENT

5.1 Relevant international and national conventions, strategies, policies and plans:

- 5.1.1 United Nations Framework Convention on Climate Change (UNFCCC), South Africa's UNFCCC obligations;
- 5.1.2 Sustainable Development Goals (SDGs) Relevant SDG targets include: 3.9.1, which calls for a substantial reduction in deaths and illnesses from air pollution; 7.1.2, which aims to ensure access to clean energy in homes and 11.6.2, which aims to reduce the environmental impact of cities by improving air quality;
- 5.1.3 The Vienna Convention for the Protection of the Ozone Layer;
- 5.1.4 The Montreal Protocol on Substances that deplete the Ozone Layer;
- **5.1.5** The Stockholm Convention on Persistent Organic Pollutants (POPs) International concerns around Mercury, Lead and Cadmium;
- 5.1.6 The 2017 National Framework for Air Quality Management in the Republic of South Africa;
- 5.1.7 The 2020 National Integrated Waste Management Policy;
- 5.1.8 The 2018 National Strategy to Address Air Pollution in Dense Low-Income Settlements; and
- **5.1.9** South Africa's contributions to the global effort to reduce GHG emissions and stratospheric ozone depletion.

5.2 OneCape2040

The City of Cape Town AQMP is aligned to OneCape2040 visions of Living Cape (Settlement Transition) that proposes good health services and a focus on service delivery and Green Cape (Ecological Transition) of which the objectives are sustainable resource use and reduction of carbon footprint (emissions).

5.3 Integrated Development Plan for the City of Cape Town

The AQMP is closely aligned to various priorities, foundations as well as related programmes, projects and initiatives of the Integrated Development Plan. These include:

5.3.1 Vision of a City of Hope: The City aims to create a City of Hope - a prosperous, inclusive and healthy city where people can see their hopes of a better future for themselves, their children and their community become a reality. This Plan especially aims to improve the health and well-being of all residents and the environment.

5.3.2 Public Space, Environment and Amenities Priority: The City is committed to improving the health of the urban environment for residents to live, work and interact in. This Plan specifically relates and aligns to the *City health programme* that outlines the City's approach to Environmental Health as well as Primary Healthcare Services.

Additionally, Objective 9 – Healthy and sustainable environment of the IDP includes the City's commitments to protect, restore and manage our natural areas to ensure their long-term sustainability. The City recognises that its green infrastructure is important to Cape Town's resilience to climate change, and for reducing the impact of shock events such as floods and heatwaves. The Corporate Scorecard linked to the IDP's implementation includes Key Performance Indicators linked to Improved Air Quality.

5.3.3 A Resilient City Foundation: The AQMP aligns with the integrated urban health programme that aims to improve and support a healthy environment, addressing disparities in health outcomes, as well as the environments that create them. The aim is to reduce vulnerability to future pandemics and improve overall health and well-being. Additionally the Plan aligns and forms part of the *Climate change response planning and monitoring initiative* that is part of the climate change programme. As part of the initiative, the City will continue to analyse and monitor key climate change indicators relevant to climate change mitigation and adaptation. This will include regular updates and reporting of Cape Town's GHG emissions inventory, and conducting hazard, vulnerability and risk assessments. The City will also strengthen its capacity to interpret and integrate climate risk response into infrastructure planning and development processes.

Other relevant strategies, policies and plans include:

5.4 Environmental Strategy for the City of Cape Town

The AQMP supports the vision of the Environmental Strategy, which seeks to enhance, protect and manage Cape Town's natural and cultural resources for long-term prosperity in a way that optimises economic opportunities and promotes access and social well-being. In the long term, the City will strive for an

environment where there is excellent air quality in all areas of Cape Town, and lung irritation, disease, and environmental impacts due to poor air quality are mitigated.

5.5 Comprehensive Integrated Transport Plan for the City of Cape Town

The AQMP aligns with the Comprehensive Integrated Plans vision of "an efficient, integrated transport system for all – implemented sustainably". The plan incorporates elements of emissions management from the transport sector.

5.6 Climate Change Strategy for the City of Cape Town

The AQMP supports the City's Climate Change Strategy vision to become a climate-resilient, resourceefficient, and carbon-neutral city that enables inclusive economic development and healthy, thriving communities and ecosystems. The AQMP aligns with Strategic Focus Area 9: Mobility for Quality of Life and Livelihoods.

5.7 Metropolitan Spatial Development Framework for the City of Cape Town;

The AQMP supports the Municipal Spatial Development Framework's Policy statement (Policy 17) which aims to appropriately protect citizens of Cape Town from risk areas and activities and which states that the development applications should ideally "avoid inappropriate urban growth and development in risk areas (fire, flooding, heat exposure, <u>poor air quality</u> and noise pollution)".

5.8 Air Quality Management Plan for the Western Cape Government

The City of Cape Town's AQMP goals align directly with the goals of the Western Cape Government AQMP.

6 REGULATORY CONTEXT

6.1 Constitution of the Republic of South Africa, 1996

Chapter 2, Section 24 of the Constitution of South Africa specifies: Environment

24. Everyone has the right -

- (a) to an environment that is not harmful to their health or well-being; and
- (b) to have the environment protected, for the benefit of present and future generations, through reasonable legislative and other measures that -
 - (i) prevent pollution and ecological degradation;

(ii) promote conservation; and

(iii) secure ecologically sustainable development and use of natural resources while promoting justifiable economic and social development.

Schedule 4 Part B of the Constitution places the onus of addressing air pollution matters on Local Government subject to Section 155(6)(a) and (7).

6.2 National Environmental Management Act, 1998 (Act No. 107 of 1998)

To provide for cooperative, environmental governance by establishing principles for decision making on matters affecting the environment, institutions that will promote cooperative governance and procedures for coordinating environmental functions exercised by organs of state; and to provide for matters connected therewith.

6.3 National Environmental Management: Air Quality Act, 2004 (Act No. 39 of 2004)

To reform the law regulating air quality in order to protect the environment by providing reasonable measures for the prevention of pollution and ecological degradation and for securing ecologically sustainable development while promoting justifiable economic and social development; to provide for national norms and standards regulating air quality monitoring, management and control by all spheres of government; for specific air quality measures; and for matters incidental thereto.

6.4 The National Environmental Management: Waste Act, 2008 (Act No. 59 of 2008)

To reform the law regulating waste management in order to protect health and the environment by providing reasonable measures for the prevention of pollution and ecological degradation and for securing ecologically sustainable development; to provide for institutional arrangements and planning matters; to provide for national norms and standards for regulating the management of waste by all spheres of government; to provide for specific waste management measures; to provide for the licensing and control of waste management activities; to provide for the remediation of contaminated land; to provide for the national waste information system; to provide for compliance and enforcement; and to provide for matters connected therewith.

6.5 The Carbon Tax Act, 2019 (Act No.15 of 2019)

To provide for the imposition of a tax on the carbon dioxide (CO₂) equivalent of GHG emissions and to provide for matters connected therewith. This includes the "polluter pays" principle.

6.6 National Health Act, 2003 (Act No. 61 of 2003)

To provide a framework for a structured uniform health system within the Republic, taking into account the obligations imposed by the Constitution and other laws on the national, provincial and local governments with regard to health services; and to provide for matters connected therewith.

6.7 National Building Regulations and Building Standards Act, 1977 (Act No. 103 of 1977)

To provide for the promotion of uniformity in the law relating to the erection of buildings in the areas of jurisdiction of local authorities; for the prescribing of building standards; and for matters connected therewith.

6.8 Local Government: Municipal Systems Act, 2000 (Act No. 32 of 2000)

Chapter 2, Section 4 (2) (i) of the Municipal Systems Act states: The council of a municipality, within the municipality's financial and administrative capacity and having regard to practical considerations, has the duty to promote a safe and healthy environment in the municipality.

6.9 Local Government: Municipal Financial Management Act, 2003 (Act No. 56 of 2003)

The General financial management functions of the Municipal Finance Management Act states that the accounting officer of a municipality is responsible for managing the financial administration of the municipality and must for this purpose take all reasonable steps to ensure that the resources of the municipality are used effectively, efficiently and economically.

6.10 City of Cape Town: Air Quality Management By-Law, 2016

To provide for air quality management and reasonable measures to prevent air pollution; to provide for the designation of the air quality officer; to provide for the establishment of local emissions norms and standards, and the promulgation of smoke control zones; to prohibit smoke emissions from dwellings and other premises; to provide for installation and operation of fuel burning equipment and obscuration measuring equipment, monitoring and sampling; to prohibit the emissions caused by dust, open burning and the burning of material; to prohibit dark smoke from compression ignition powered vehicles and provide for stopping, inspection and testing procedures; to prohibit emissions that cause a nuisance.

6.11 City of Cape Town: Municipal Planning By-law, 2015

The general purpose of this By-law is to determine use rights and to provide for control over use rights and over the utilisation of land in the area of jurisdiction of the City of Cape Town.

7 PLAN PARAMETERS

This document fulfils the purpose of the City of Cape Town's Air Quality Management Plan as contemplated in Section 15(2) of the National Environmental Management: Air Quality Act, 2004 (Act No. 39 of 2004).

- 7.1. The Plan applies city-wide.
- **7.2.** The Plan seeks to provide a transversal approach to Air Quality Management related challenges facing the city.
- 7.3. The Plan is guided and implemented through the City's Air Quality Management By-law, 2016.
- **7.4.** The Plan has transversal implications and requires various directorates to work collaboratively to realise the vision, mission and goals and objectives of the plan.

8 ROLE PLAYERS AND STAKEHOLDERS¹

The following role players and stakeholders are identified for the purpose of implementing the provisions of this strategic plan:

8.1 Community Services and Health Directorate

8.1.1 City Health Department

8.1.1.1 Air Quality Management

The unit is responsible for the implementation of air quality related legislation. The Unit also collaborates with the Area and sub-district Environmental Health units to identify sources of air pollution. The Air Quality Management unit has entered into inter-departmental Service Level Agreements with the City's Scientific Services regarding ambient air quality monitoring and the City's Traffic Services for the implementation of the diesel vehicle emissions testing programme.

8.1.1.2 Personal Primary Health Care

Facilitating the understanding in the state of health and well-being and treatment for the impacts of poor air quality on the community within the context of the state of ambient air quality. Epidemiological monitoring of the burden of disease due to poor air quality.

8.1.2 Recreation and Parks Department

City Parks plays an important role in greening open spaces i.e. through the planting of trees and shrubs which act as barriers between pollution sources and receptors and helps mitigate wind-blown dust.

8.2 Urban Mobility Directorate

Due to the impact the transport sector has on ambient air quality, the Urban Mobility Directorate is a key stakeholder in the successful improvement in the state of ambient air quality through the implementation of the City's Comprehensive Integrated Transport Plan. Infrastructure planning and transport related programmes such as public transport, rail transport and taxi associations all contribute in this regard.

8.3 Corporate Services Directorate

The directorate has an extensive vehicle fleet and good quality fuel procurement, driver behaviour and regular vehicle maintenance and repair are key factors to ensure low vehicle emission release.

8.4 Safety and Security Directorate

8.4.1 Fire and Emergency Services

Assesses facilities for their compliance with the National Building Regulations and Building Standards Act, 1977 (Act No. 103 of 1977) and issues Fire Safety Certificates during application for approval of

¹ Note that while directorate or departmental names may change in the future, the functional requirements and alignment remain in place.

open burning applications, fuel-burning equipment and to provide comments during the Atmospheric Emission Licensing process. Disaster Management and Fire Safety undertake education and awareness activities in fire prevention in informal settlements as well as wild fire prevention.

8.4.2 Law enforcement

Assistance by City Law Enforcement in the execution of Air Quality Management legislation in particular, the Metals Theft unit.

8.4.3 Traffic Enforcement

Assistance by Traffic Department during diesel vehicle emissions testing.

8.5 Water and Sanitation Directorate

8.5.1 The Water and Sanitation Services

The unit is responsible for maintenance and effective operational management of wastewater treatment plants to minimise atmospheric emission releases.

8.5.2 The Scientific Services Department

The Department manages the air quality monitoring network and associated laboratory services and provides statistical data and scientific interpretation and advice relating to air quality matters.

8.6 Urban Waste Management Directorate

The Directorate has the delegated authority and mandate to construct and maintain landfill sites in order to minimise the release of landfill gas emissions. Solid Waste Management is responsible for the development of landfill gas management systems as well as promoting waste to energy and alternate waste disposal methods in order to reduce waste. Solid Waste Collection Services facilitate the effective removal of refuse to prevent the open burning of refuse.

8.7 Future Planning and Resilience Directorate

8.7.1 Resilience and Risk Department

This department is responsible for coordinating the implementation of the City's transversal Climate Change Strategy and Climate Change Action Plans.

Energy Directorate

8.8.1 Electricity Generation and Distribution

Maintaining a continuous electricity supply plays an important role in Air Quality Management through the electrification of previously un-serviced areas and the subsequent reduction of biomass burning for cooking and space heating. When supply interruptions occur, industry relies on standby generation capacity (such as diesel generators), which affects the local airshed. The maintenance of electricity generating installations is critical to minimise emission release from facilities such as Eskom's Ankerlig and Acacia peaking generation turbines.

8.8.2 Sustainable Energy Markets

The development of sustainable and renewable energy markets and the promotion of sustainable energy utilisation have the potential to make a significant positive contribution to ambient air quality.

8.9 Spatial Planning and Environment Directorate

The implementation of the Metropolitan Spatial Development Framework, District Spatial Development Frameworks and the City's Municipal Planning By-law, 2015 should regulate developments within the City in such a manner that air quality impacts are considered when industrial and residential development applications are submitted. The Planning and Building Development Management Department is responsible for the approval of building plans and for the authorisation of land use.

Air quality is also a sub-component of 'Strategic Focus Area 3: Environmental Quality Management and Monitoring' of the City's Environmental Strategy, and the AQMP is included as an implementation tool in the Implementation Framework of the Environmental Strategy. There is thus a need for collaboration in relation to monitoring, evaluation and reporting on air quality as part of the Environmental Strategy.

The biennial City of Cape Town's State of the Environment Report is an essential monitoring and evaluation tool used to identify and report on changes to the city's natural environment, and supports informed environmental decision making. The State of the Environment Report includes a chapter on air quality; a description and analysis of the state of air quality; key management responses and trends in air quality.

8.10 Human Settlements Directorate

The Human Settlements Directorate ensures improvements in service delivery to informal settlements and backyarders, which could result in an improvement in ambient air quality.

8.10.1 The Housing Development Department

The Department plays an important role in terms of the National Strategy to address air pollution in dense low-income settlements through the implementation of energy saving initiatives in the design of new and retro-fitment of existing housing.

8.11 Provincial Government

The Western Cape Government through its Department of Environmental Affairs and Development Planning play an oversight role and provide support and guidance to Air Quality Management services at a municipal level in the Province. The Provincial Department of Health and Wellness is involved in the monitoring and treatment of the health effects of poor air quality on the community.

The activities and objectives of the City's AQMP support the aims and objectives of the Western Cape Government's AQMP.

Together with the district and local municipalities of the rest of the Western Cape, the City's Air Quality Officer represents the City at the Provincial Air Quality Officers Forum. Through cooperative governance, the forum strives to coordinate and streamline air quality management activities in the Province.

8.12 National Government

The Chief Directorate Air Quality Management of the National Department of Forestry Fisheries and Environmental Affairs plays an important role in the formulation and promulgation of National legislation, policy and strategy development. The City is represented by the Air Quality Officer on the Ministerial Technical Advisory Committee Work Group II – Air Quality Management and its various sub-committees. These committees plan work activities, assist with commenting on legislation formulation, National policy and strategy development and coordinate work activities between the National Department, Provinces and Metropolitan Councils on air quality management matters.

8.13 Industry and Business

Businesses and industry need to adhere to environmental regulations and standards set by the government. This includes obtaining necessary permits, monitoring emissions, and implementing measures to reduce pollution. Where possible, industries should actively work towards minimising their emissions by adopting cleaner technologies, using energy-efficient processes, and implementing emission control measures. This can involve upgrading equipment, optimising production processes, and investing in renewable energy sources.

Businesses can play a crucial role in educating their employees, customers, and the wider community about the importance of air quality and the actions individuals can take to contribute to improvement. This can involve organising awareness campaigns, providing educational materials, and promoting sustainable practices or encouraging sustainable transportation practices among employees and customers which can significantly contribute to improving air quality. Businesses can promote carpooling, provide incentives for using public transportation, and support the use of electric vehicles. Businesses can collaborate with the City, community organisations, and other stakeholders to develop and implement air quality improvement initiatives. They can participate in public consultations, share best practices, and support advocacy efforts from government and interest groups.

8.14 General public

The general public plays a crucial role in improving air quality within the City of Cape Town. Individuals have the power to contribute to a cleaner environment through various actions and responsibilities:

Firstly, adopting sustainable transportation practices is important. Where possible choosing public transportation, carpooling, biking, or walking reduces the number of vehicles on the road, thus reducing air pollution from exhaust emissions. Responsible burning practices are essential to prevent air pollution. Avoiding the open burning of garden waste and opting for proper waste disposal methods such as recycling, composting, or using designated waste collection services helps minimise harmful emissions. Reporting polluters to relevant authorities is an active way to combat air pollution.

Raising awareness about air quality issues is crucial as well. Engaging in educational campaigns, sharing information with others can encourage sustainable practices and urge authorities and businesses to prioritise air quality improvement.

Furthermore, planting trees and supporting green spaces contribute significantly to improving air quality. Trees absorb air pollutants, and individuals can plant trees in their homes, neighbourhoods, or participate in community tree-planting initiatives. Supporting the creation of green spaces within the city also helps mitigate air pollution.

Finally, participating in public initiatives is crucial. Engaging in public consultations, attending community meetings, and providing input on air quality-related policies and programmes allows residents to voice concerns, share ideas, and contribute to decision making processes.

Through sustainable practices, awareness raising, and active participation, the general public can make a substantial difference in improving air quality in Cape Town.

9 PLAN DIRECTIVES: GOALS AND OBJECTIVES

The Goals and Objectives as discussed above for the AQMP are captured in the set of tables on the following pages.

How to read the tables below:

- i. Key activities: Crucial activity to achieve the relevant objective and overall goal
- ii. **Responsible Department:** Relevant City department noting that these may shift in the future
- iii. Term: Ongoing means current; Short term less than 1 year; Medium term 1 to 5 years; Long term more than 5 years
- iv. **Dependencies:** The resources/aspects that are required/must be in place to achieve the activity
- v. Desired outcomes: This is what we are seeking to achieve from the activity

9.1 GOAL 1: REDUCE HARMFUL GREENHOUSE GAS EMISSIONS THROUGH SUPPORTING AIR QUALITY AND CLIMATE CHANGE RESPONSE PROGRAMMES

The relationship between air quality and climate change is clear: activities that lead to the emission of carbon dioxide and other GHGs also promote the emission of other air pollutants. Additionally, poor health associated with exposure to poor air quality lowers general health and wellbeing. Increased temperatures may also lead to the increased formation of ground level ozone, impacting on the health of those exposed to this pollutant. It is critical that air quality is improved for all specifically for vulnerable residents and those that live in dense low-income settlements who are disproportionately affected by low air quality.

Objective 1.1: To improve air quality in dense low-income settlements:

The Draft Strategy to Address Air Pollution in Dense Low-Income Settlements (Department of Environmental Affairs -2016) recognises that "air pollution monitoring data has shown that there are some geographic areas within the country where ambient air quality standards are being exceeded and this is posing a threat to human health and the environment in those areas". Ambient air quality monitoring in the Khayelitsha and Wallacedene areas shows that the NAAQS for PM₁₀ are often exceeded during winter months when inversion conditions prevail.

The Khayelitsha Air Pollution Strategy (KAPS) project was implemented to provide an understanding of the factors behind the high levels of PM₁₀ observed. The project identified the factors that contribute to high PM₁₀ levels in Khayelitsha as household waste burning, informal meat traders who burn wood for cooking fuel, waste tyre burning, vehicular emissions, and dust blown by wind from the unpaved roads and surfaces (KAPS 2008).

Where poor air quality impacts on human health and the environment, the City has undertaken to improve air quality in affected areas in the following ways:

- 1. Collaborate with National Government in the implementation of the Khayelitsha Air Pollution Strategy, a community based project to try and reduce PM₁₀ levels in the area through education and targeted interventions. The City will strive to implement similar approaches across similar contexts across the Metropolitan area.
- 2. Appoint a representative to attend meetings of "National Coordination Committee (NCC) on Residential Air Pollution" when required.
- 3. Implement activities aimed specifically at improving air quality in dense low-income settlements, or implementing activities that have known positive air quality impacts and actively provide up to date information on such activities to the NCC.

- 4. Be involved in the development and facilitation of identified possible interventions to improve air quality in low-income settlements.
- 5. Support the provision of affordable or subsidised clean energy alternatives where feasible e.g. Solar tech alternatives, Clean stoves, free basic electricity with efficient appliances, subsidised Liquid Petroleum Gas. Ensure that low-income houses are energy efficient as per the National Building Regulations and specifically SANS 10400 XA Environmental Sustainability Energy Usage in Buildings, influence development-planning initiatives to take into account air quality issues.
- 6. In order to improve air quality in dense low-income settlements, air quality officers should be part of development planning and should be in constant liaison with development sections to ensure that the following services are prioritised during development planning in dense low-income settlements:
 - a. Road surfacing;
 - b. Regular refuse removal;
 - c. Electrification; and
 - d. Supporting housing development that is energy efficient.

	Key Activity	Responsible Department	Term	Dependency	Desired Outcomes/Indicators
					for Success
1.	Appoint a dedicated Senior Air Quality	City Health	Short	Staff Capacity	SAQP appointed to position.
	Practitioner (SAQP) to champion air				
	quality improvement projects in dense				
	low-income settlements.				
2.	Internal Departments to undertake	Roads; City Parks; Solid	Ongoing	Departmental Budgets	Reduction in air pollution levels
	projects that address identified sources of	Waste; Informal			recorded at Wallacedene
	pollution e.g. Solid Waste removal;	Settlements; Sustainable			and Khayelitsha air quality
	Alternative clean energy sources (the	Energy Markets			monitoring stations.
	provision of free basic energy subsidy				
	policy), Paving of roads and greening of				
	open spaces/parks.				

	AIR QUALITY MANAGEMENT PLAN					
3.	Engage with Violence Prevention through	AQM / VPUU	Short	Cooperative Governance	Reduction in air pollution levels	
	Urban Upgrading (VPUU) and Economic				recorded at Wallacedene	
	Development to implement social				and Khayelitsha air quality	
	upliftment projects with air quality co-				monitoring stations.	
	benefits e.g. improvements to informal					
	trading braai areas.					
4.	Engage with relevant political	City Health	Short	Political support from Sub-	Reports on air pollution to sub-	
	stakeholders to support air pollution			Councils	councils submitted.	
	interventions in informal settlements.					
5.	Support and ensure that newly built	Housing	Ongoing	Budget and political	% of new RDP housing	
	government subsidised housing or alike			support	designed and constructed in	
	units are designed and constructed in				accordance with energy	
	accordance with energy efficiency				efficiency guidelines.	
	guidelines.					
6.	Influence Development Planning	Housing, Development	Ongoing	Cooperative Governance	New housing developments	
	Initiatives for new housing developments	Management, City			are developed taking the	
	to consider air quality impacts from	Health AQM and Safety			impacts of existing localised air	
	localised industrial emission sources.	and Security			pollution sources into	
					consideration.	

OBJECTIVE 1.2: To reduce and manage landfill emissions:

				Desired Outcomes/Indicators
Key Activity	Responsible	Term	Dependency	for Success
	Department			
1. Formulate and implement a Dust Management Plan for	Solid Waste	Medium term	Capacity	Dust management plans
all City landfill sites.				formulated and implemented
				for all City landfill sites.
2. Solid Waste to reduce the impact of daily dust fall for	Solid waste	Medium term	Budget	Reduction in community dust
residential and non-residential areas adjacent to landfil				complaints for land fill sites.
sites.				
3. Support the City's Solid Waste Department in the	Scientific Services	Ongoing	Staff Capacity	Technical support provided in
monitoring of landfill gas emissions.				monitoring landfill gas
				emissions.
4. Participate in landfill monitoring committees that have	City Health	Ongoing	Cooperative	Landfill monitoring committee
been established at various sites across the City.			Governance	meetings attended and
				technical support provided.
5. Solid Waste to reduce GHG emissions to atmosphere	Solid waste	Medium term	Budget	GHG emission reduction
through the roll out of GHG emissions reduction systems				technologies installed at
				landfill sites.

OBJECTIVE 1.3: To reduce and manage emissions from waste water infrastructure

	Key Activity	Responsible	Term	Dependency	Desired Outcomes/Indicators
		Department			for Success
1.	Support the City's Water and Sanitation Department in	Scientific Services	Short term and	Capex and	Technical support and
	the management of gaseous emissions from Waste	and Water and	ongoing	Opex Budget	assistance provided in
	Water Treatment Works.	Sanitation			response to complaints
					received.
2.	Manage odorous hydrogen sulphide and other	Water and	Ongoing	Capex and	Technical support and
	emissions generated by waste water treatment process	Sanitation		Opex Budget	assistance provided in
	to below nuisance levels for adjacent communities.				response to complaints
					received.
3.	Manage and maintain sewerage pump stations and	Water and	Ongoing	Capex and	Technical support and
	distribution infrastructure to prevent the emission of	Sanitation		Opex Budget	assistance provided in
	odorous emissions to atmosphere to below nuisance				response to complaints
	levels.				received.
4.	Manage and reduce GHG emissions from Waste Water	Water and	Medium	Capex and	Reduction in GHG emissions
	Treatment infrastructure.	Sanitation		Opex Budget	inventory.
5.	Undertake routine air quality monitoring of hydrogen	Scientific Services	Ongoing	Capex and	Technical support and
	sulphide at Waste Water Treatment Works where	and Water and		Opex Budget	assistance provided in
	complaints are received.	Sanitation			response to complaints
					received.

OBJECTIVE 1.4: To reduce and control vehicle emissions in the City

An effective vehicle emissions reduction and control programme has direct ambient air quality benefits through the reduction of particulate matter and brown haze episode intensity and occurrence. The programme also has a number of climate change co-benefits, these include black carbon emissions reduction through regular diesel vehicle emissions testing, compliance and enforcement.

Key Activity	Responsible	Term	Dependency	Desired Outcomes/Indicators
	Department			for Success
1. Re-establish the Vehicle Emissions Working Group for the	Urban Mobility	On-going	Transversal	Improved transversal
implementation of inter-departmental cross-cutting local	(Lead) / City		cooperation	governance of vehicle
air quality response activities.	Health, Scientific		and capacity	emissions.
	Services and			
	Energy as well as			
	Future Planning			
	and Resilience			
	(Support)			
2. Undertake research to support and encourage best	Urban Mobility /	On-going	Capacity and	Emission reduction research
practice with regards to vehicle emission reduction	AQM / Sustainable		budget	undertaken; reduction
interventions.	Energy Markets			interventions identified and
				implemented.
3. Participate in and collaborate in and support other	Urban Mobility / Air	On-going	Transversal	Improved transversal
forums and organisations undertaking initiatives that	Quality		cooperation	governance and shared
relate to vehicle emission reductions in order to share	Management /		and capacity	learning on vehicle emissions
lessons learned and transfer knowledge (examples	Sustainable Energy			reduction activities.
include WC Elective Vehicle (EV) Task Team; C40	Markets			
National EV Working Group).				

4.	Support relevant national initiatives and activities that	City Health AQM	On-going	Transversal	Improved transversal
	relate to vehicle emissions reduction and control.	and Urban Mobility		cooperation	governance and shared
				and capacity	learning on vehicle emissions
					reduction activities.
5.	Develop or provide input into development of relevant	Urban Mobility,	On-going	Transversal	Improved transversal
	policy frameworks/ activities in support of cleaner fuel,	AQM and		cooperation	governance of vehicle
	vehicle technologies and renewable energy sources for	Sustainable Energy		and capacity	emissions reduction activities.
	fuel use as well as associated infrastructure.	Markets			
6.	Initiate necessary activities/ policies to reduce vehicle	Urban Mobility	On-going	Transversal	Improved transversal
	emissions.			cooperation	governance, activities and
				and capacity	policies for vehicle emissions
					reduction.
7.	Continue diesel vehicle emissions testing and ensure	City Health, and	On-going	Transversal	Diesel vehicle emission testing
	enforcement of emission requirements.	Safety and Security		cooperation	targets met as per Service
		– Traffic Services		and capacity	Delivery and Budget
					Implementation Plan (SDBIP).
8.	Support the City's Fleet Greening Strategy and consider	Urban Mobility,	Short to medium	Transversal	City's Fleet Greening Strategy
	feasible interventions in order to:	and City Health		cooperation,	successfully implemented.
	a) Improve vehicle efficiency;			capacity and	
	b) Improve operational efficiency;			resources	
	c) Promote an alternative technology programme				
	that assesses costs and benefits transparently				
	and pilots viable options; and				
	d) Integrate e-fuelling and other City fleet emissions				
	data into a generally accessible reporting				

database and platform like EPCAM ² , Smart				
Facility or other.				
9. Improve the use of predictive air quality modelling tools	Urban Mobility,	Medium to Long	Transversal	Air quality and transport
to inform land use and transport planning and ensure	AQM and		cooperation,	modelling tools and
better alignment between Transport and AQM.	Scientific Services		capacity and	information used to inform
	Department		resources	land use and transport
				planning and ensure better
				alignment between Transport
				and AQM.
10. Promote and expand the City's SMART Driver Training	ERM and Fleet	On-going	Staff capacity	City fleet driver behaviour
Programme to improve fuel consumption through driver	Management			improved to reduce fuel
behaviour change.				consumption.
11. Integrate GHG emissions and air quality metrics into the	Sustainable Energy	On-going	Section 21.1 of	GHG emissions and air quality
Urban Development Index by:	Markets and AQM		City of Cape	metrics updated and
a) Developing a credible, spatially disaggregated	Urban Mobility to		Town Climate	integrated into the UDI.
transport GHG and local air pollutants inventory	support		Change Action	
for the city; and			Plan	
b) Ensuring that the data outputs are configured in			(CCAP)	
such a way that it is compatible with and can be				
integrated into the UDI dataset.				
12. Support Transport in the development of a	Urban Mobility,	On-going	Resources and	Transport communications
communications/ behavioural change strategy.	Environmental		capacity	and behavioural change

² EPCAMTM is a Carbon disclosure reporting system – read more here: <u>https://www.brundtland.co.za/brundtland-epcam/</u>

Management, and		strategy developed and
City Health		implemented.

OBJECTIVE 1.5: To support sustainable transport planning initiatives

It should be noted that while the sustainable transport initiatives below are essential to the success of the AQMP; these activities below have been prioritised in the City's Climate Change Strategy and its associated Climate Change Action Plan; the City's Comprehensive Integrated Transport Plan (CITP); the City's Travel Demand Management Plan (TDMP). Many of these priority areas are already being addressed in various other forums such as the Inter-modal Planning Committees (IPC) and their respective working groups, which report directly to the high level Land Transport Advisory Board (LTAB). While still included here for reference sake, please note the focus of the re-established Vehicle Emissions Working Group referred to above will remain on the items listed in objective 1.4.

				Desired Outcomes/Indicators
Key Activity	Responsible	Term	Dependency	for Success
	Department			
1. Support densification through integrated transport and	Spatial Planning	Medium to long	Transversal	Densification achieved
land use planning.	and Urban Mobility		governance,	through integrated transport
			budget and	and land use planning.
			capacity	
2. Support and encourage a safe and more reliable public	Urban Mobility	Medium to long	Transversal	Safe and more reliable public
transport system.			governance,	transport system in place.
			budget and	
			capacity	
3. Support modal shift to public transport and non-	Urban Mobility	Medium to long	Transversal	Modal shift to public transport
motorised transport.			governance,	and non-motorised transport
			budget and	achieved.
			capacity	

4. Support Travel Demand Management measures with	Urban Mobility	Medium to long	Transversal	Travel behavioural change
overall aim of influencing travel behavioural change and			governance,	and reduction in the number
reducing the number of vehicle kilometres travelled.			budget,	of vehicle kilometres travelled.
			capacity and	
			public buy-in	
5. Support electrification of the My-Citi bus fleet and other	Urban Mobility	Medium to long	Transversal	My-Citi bus fleet and other
public transport (C40 Green and Healthy Streets			governance,	public transport electrified.
Declaration).			budget and	
			capacity	
6. Support the initiatives to develop Zero Emissions Areas	Urban Mobility	Medium to long	Transversal	Develop Zero Emissions Areas
(ZEA) in a major part of the city (C40 Green and Healthy			governance,	(ZEA) in parts of the city (C40
Streets Declaration).			budget and	Green and Healthy Streets
			capacity	Declaration).
7. Support measures aimed at the widespread adoption of	Sustainable Energy	Medium to long	Budget and	Charging station infrastructure
Electric Vehicles roll out of supportive infrastructure such as	Markets		capacity	provided.
charging stations.				

OBJECTIVE 1.6: To support Climate friendly procurement in the City

Key Activity	Responsible Department	Term	Dependency	Desired Outcomes/Indicators for Success
1. Facilities and Supply Chain Management need to	Facilities	On-going	Departmental	Green procurement of HVAC
adopt a more climate friendly policy on	Management and		cooperation	systems implemented by
refrigeration and Heating, Ventilation, and Air	Supply Chain			facilities management.
Conditioning (HVAC) procurement that have a	Management			

lower energy consumption with reduced impact on		
GHG emissions.		

OBJECTIVE 1.7: To support National; Provincial and Local programmes to reduce greenhouse gases and its associated carbon footprint.

Key Activity	Responsible	Term	Dependency	Desired Outcomes/Indicators
	Department			for Success
1. Support National, Provincial and local programmes	City Health;	On-going	Cooperative	Programmes and initiatives
and initiatives to reduce GHG emissions and the	Environmental		governance	supported to reduce GHG
associated carbon footprint.	Management;			emissions and the associated
	Energy and			carbon footprint.
	Climate change;			
	and			
	Transport: support			
	role			

9.2 GOAL 2: ENSURE EFFECTIVE AND CONSISTENT AIR QUALITY MANAGEMENT, LINKED TO CLIMATE CHANGE RESPONSE

Objective 2.1: To maintain and enhance the Air Quality Management System for the City of Cape Town.

	Key Activity	Responsible Department	Term	Dependency	Desired Outcomes/Indicators for Success
1.	Continuously update the City's emission	Air Quality	On-going	Staff capacity	Emissions Inventory
	inventories with current available	Management			updated annually.
	information on sources of air pollution. This				
	information is used to inform other city				
	activities.				
2.	Verification of the actual fuel consumption	Air Quality	On-going	Staff capacity	Annual update of fuel
	of larger fuel burning entities on the Air	Management			consumption of large
	Quality Management database.				Users.
3.	Develop regulatory dispersion modelling	Air Quality	Medium to long	Ongoing Training of	Number of staff trained in
	capacity within the City that aligns with	Management		staff on applicable air	air dispersion modelling.
	national and international norms and			dispersion models	
	standards.				
4.	Improve the ambient air quality monitoring	Scientific Services	On-going	Budget for	Improved data recovery
	network infrastructure of the City to enable			replacement analysers	rates and number of
	accurate reporting of air quality			and staff capacity	analysers recapitalised.
	information i.e. one additional monitoring				
	station will be added to the Mitchells Plain				
	area.				

5.	Extend the ISO 17025 ³ quality system to	Scientific Services	Short	Budget for application	Number of remote stations
	include remote air quality stations.			and staff capacity	South African National
					Accreditation System
					(SANAS) accredited
6.	Expand the meteorological monitoring	Scientific Services	Short	Budget	Number of stations with
	capabilities of the ambient air quality				meteorological capability.
	network.				
7.	Re-instate SANAS TR07/03 ⁴ certification to	Scientific Services	Short to Medium		SANAS accreditation
	the Athlone reference laboratory and roll			Budget	achieved.
	out accreditation to the ambient air				
	quality monitoring network.				
8.	Engage with other ambient air quality	City Health AQM	Short	Cooperative	Private monitoring
	monitoring station owners to supply their			governance	networks added to
	data to the SAAQIS and City e.g. National				saaqis.
	Ports Authority; Airport Company South				
	Africa; Eskom.				
9.	Conduct an internal annual review of	City Health	Annually	Internal review	Internal review conducted
	progress towards implementing objectives.				annually.
10	Conduct a full AQMP review every five	City Health	Every 5 years	Internal review	Internal review conducted
10.		City Houin			
	youis.				every 5 years.

³ ISO 17025 enables laboratories to demonstrate that they operate competently and generate valid results, thereby promoting confidence in their work both nationally and around the world.

⁴ Supplementary Requirements for the Accreditation of Continuous Ambient. Air Quality Monitoring Stations

11. Investigate options for utilising sensor-	Scientific Services	Ongoing	Budget and staff	Feasibility study
based pollution monitoring technology of	(Lead) with City Health		capacity	conducted.
transport related emissions and the	and Transport (Support)			
impacts on ambient air quality, and				
implement the technology if deemed				
feasible.				

Objective 2.2: To develop and implement mechanisms and systems to attain compliance with national ambient air quality standards.

Key Activity	Responsible Department	Term	Dependency	Desired
				Outcomes/Indica
				tors for Success
1. Implement ambient air quality screening	Scientific Services and City	Ongoing		Screening of
with portable ambient air quality	Health		Budget	identified
analysers in problem areas currently not				problem areas
covered by the network.				conducted.
2. Maintain the ambient air quality	Scientific Services	Short	Capital expenditure	75% data
monitoring network to achieve a			& Operating	recovery rates
minimum of 75% data recovery rates for			expenditure	achieved.
all measured pollutants across the			Budget/	
network and develop a turnaround			SCM for rapid	
strategy to achieve this			procurement	
sindlegy to define ve this.			of Repairs and	
			Maintenance	
3. To accredit the ambient air quality	Scientific Services	Medium to long	Budget	Number of
monitoring network in terms of ISO 17025.				remote stations

				SANAS
				accredited.
4. Replace ambient air quality monitoring	Scientific Services and City	Ongoing	Budget	The number of
equipment that has reached the end of	Health			analysers
their useful lifecycle (usually 7 - 10 years).				recapitalised.

Objective 2.3: To monitor criteria air pollutants which, through ambient concentrations, deposition or in any other way, present a threat to health, well-being or the environment.

Waste as well as water and sanitation services are known to impact on air quality and climate change through the emissions of criteria and non-criteria air pollutants⁵ and GHGs from waste water treatment works and landfill sites. The table below outlines approaches to reduce the health and environmental impacts.

	Responsible			Desired
Key Activity	Department	Term	Dependency	Outcomes/Indicators
				for Success
1. Continuously monitor, analyse and report on	Scientific Services and	On-going	Budget	Ambient air quality
ambient air quality and point, non-point and	City Health AQM			monitoring reporting to
mobile source emissions.				the SAAQIS.
2. Monitor the health outcomes secondary to air	City Health	On-going	Budget	Review conducted
pollution in partnership with City Health	(Epidemiology)			every 5 years.
epidemiology/ Urban Health programme.				

⁵ Includes all other pollutants that are not listed pollutants (see section 1.1 of the Plan)

				1	r
3.	In partnership with the Head: Climate Change,	City Health and	Medium/Long	Budget	Investigations initiated
	initiate investigations on the relationship	Sustainable Energy			to counteract climate
	between climate change and ambient air	Markets			change impacts.
	quality and implement measures to counteract	(Transport – Support			
	these impacts such as:	Directorate) and			
	a) Focussing on mitigation which will cover	Resilience Department,			
	the aspect of emissions and reducing its	Future Planning and			
	impact on climate change and air	Resilience Directorate			
	quality; and				
	b) Researching the climate change impact				
	on air quality in the City.				
4.	Maintain and expand the ambient air quality	Scientific Services	Short/Medium	Budget and	Number of new priority
	monitoring network to measure priority	Department		Staff Capacity	pollutant analysers
	pollutants.				added.
5.	Develop activities to monitor, manage and	Solid Waste and Water	Short/Medium	Budget and	Strategy developed to
	reduce atmospheric emissions from waste water	and Sanitation		Staff Capacity	monitor, manage and
	treatment works, gas flaring and energy				reduce atmospheric
	generation projects and landfill sites.				emissions.

9.3 GOAL 3: RAISE AWARENESS WITH RESPECT TO AIR QUALITY MANAGEMENT AND CLIMATE CHANGE RESPONSE

Objective 3.1: To support research efforts to determine the extent of detrimental health effects of poor air quality on the population of Cape Town

Key Activity		Responsible Department	Term	Dependency	Desired
					Outcomes/Indicators for
					Success
1.	Support the Western Cape Government	City Health	Medium	Western Cape Government	Recommendations
	Health Risk Assessment's (linked to air			continued funding of their	implemented.
	pollution) phased rollout of the study			research studies. Sufficient	
	and implement any applicable			budget to implement	
	recommendations for the City of Cape			recommendations arising	
	Town study area.			from the studies.	
2.	Promote, assist and support academic	City Health, Future	Short/	Transversal cooperative	Academic research
	research initiatives with respect to health	Planning, Resilience	Ongoing	governance within City	initiatives supported and
	effects and climate change aspects	(Corporate Research		Departments.	approved in terms of the
	linked to air pollution through the	Branch) and Scientific			City research Protocols.
	provision of the City's ambient air quality	Services Department (Air			
	monitoring and emissions inventory data	Quality Labs)			
	and support.				
3.	Support the Environmental	City Health and	Ongoing	Transversal cooperative	Data and inputs provided
	Management Department on reporting	Scientific Services		governance within City	for the biennial State of the
	on air quality within the biennial State of			Departments.	Environment Report.
	the Environment Report.				

Objective 3.2: To expand upon existing education and awareness activities and to provide a comprehensive and sustainable awareness and communication programme for Air Quality Management.

Key Activity		Responsible	Term	Dependency	Desired
		Department			Outcomes/Indicators for
					Success
1.	Establish a dedicated Education and	City Health	Medium	Adequate staff, budget	A dedicated Education and
	Awareness component within the Air			capacity, and resources	Awareness component
	Quality Management unit to			needed to implement	within the Air Quality
	implement programmes.			educational and awareness	Management unit is
				programmes.	established and resourced.
2.	Expand on existing primary schools	City Health	Short/Medium	Adequate staff, budget	Number of air quality
	education programmes.			capacity, and resources	related education and
				needed to undertake	awareness programmes
				educational, and awareness	undertaken in primary
				programmes.	schools annually.
3.	Support and encourage best	City Health, Resilience	Medium/Long	Adequate staff, budget	Number of air quality
	practice and reduction at source	Department,		capacity, and resources	related education and
	activities by developing education	Environmental		needed to develop	awareness programmes
	material for industry.	Management		educational and awareness	undertaken at industries
		Department and		programmes.	annually.
		Enterprise and			
		Investment			
4.	Develop linkages to Cities "Let's ACT	City Health / Resilience	Short/Medium	Transversal cooperative	Formalised linkages
	campaign".	Department		governance and capacity.	developed in support of the
					"Let's ACT" campaign.

5.	Collaborate transversely with other	City Health;	Short /	Transversal cooperative	Initiatives undertaken in
	internal and external role players in	Environmental	Medium /	governance, budget and	support of the "Let's ACT"
	promoting clean air initiatives e.g.	Management	Ongoing	capacity	campaign, City's Smart
	The City's Smart Living Programme	Department and Energy			Living Programme and
	and Handbook and the Energy and	and Future Resilience			Handbook and the Energy
	Sustainable Markets Climate	Department			and Sustainable Markets
	Change communications.				Climate Change
					communications.

9.4 GOAL 4: INCREASE COMPLIANCE THROUGH EFFECTIVE AND CONSISTENT AIR QUALITY COMPLIANCE MONITORING AND ENFORCEMENT

Objective 4.1: To enforce current and future legislation for Air Quality Management

				Desired
Key Activity	Responsible	Term	Dependency	Outcomes/Indicators for
	Department			Success
1. Enforce the City of Cape Town: Air Quality Management	City Health AQM	Short	Adequate	Compliance and
By-law, 2016.	and Law		human	enforcement inspections
	Enforcement		resource	undertaken, fines issued and
			capacity	legal actions taken for non-
				compliance.
2. Enforce National Environment Management: Air Quality	City Health AQM	Short	Adequate	Compliance and
Act, 2004 (Act No. 39 of 2004) (NEM:AQA) provisions.			human	enforcement inspections
			resource	undertaken, fines issued and
			capacity	legal actions taken for non-
				compliance.
3. Ensure compliance of listed activities with Atmospheric	City Health AQM	Short/medium	Adequate	Compliance and
Emission Licence conditions and minimum emission			human	enforcement inspections
standards through compliance audits.			resource	undertaken, fines issued and
			capacity	legal actions taken for non-
				compliance.
4. Initiate, lead and participate in joint compliance and	City Health AQM	Ongoing	Cooperative	Joint compliance
enforcement actions with Environmental Management			governance.	inspections undertaken
Inspectors (EMIs) from Provincial and National				when required.
departments.				

5.	Ensure all Licensed Listed activities and Section 23	City Health AQM	Annually	Industry	90% of Listed Activities and
	Controlled Emitters report their annual emissions to the			cooperation,	Section 23 Controlled
	National Atmospheric Emission Inventory System (NAEIS)			compliance	Emitters report emissions to
	within the prescribed reporting timeframes.			and	the NAEIS.
				enforcement	
6.	The AQM Unit processes all Atmospheric Emission	City Health AQM	Annually and	Cooperative	100% of AEL applications
	Licence (AEL) applications submitted on the South		ongoing	governance	processed and issued within
	African Atmospheric Emission Licensing and Inventory				prescribed timeframes.
	Portal (SAAELIP) within the timeframes prescribed in the				
	National Framework for Air Quality Management in the				
	Republic of South Africa.				
7.	Develop and implement a Standard Operating	City Health AQM	Short /Ongoing	Cooperative	SOP developed and
	Procedure (SOP) with Safety and Security Metals Theft	& Safety and		governance	implemented.
	Unit on the enforcement of illegal open burning for	Security			
	metal recovery.				

OBJECTIVE 4.2: To strengthen and build capacity in air quality management and compliance and enforcement

Key Activity	Responsible	e Term	Dependency	Desired Outcomes/Indicators
	Departmen	t		for Success
1. All newly appointed Air Quality Practitioners	to be City Health	Short	Budget and course	All Air Quality Practitioners
trained and appointed as EMIs.	AQM		availability in Western	trained and appointed as
			Cape	EMIs.
2. Participate in and collaborate and support	the City Health	Short	Cooperative	Participation in and input into
Western Cape/City of Cape Town EMI forur	n and AQM		governance	DEA&DP AQM and EMI
Provincial Air Quality Officers Forum Work G	roup.			forum.

OBJECTIVE 4.3: To conduct annual compliance monitoring and enforcement of Listed Activities

	Responsible			Desired Outcomes/Indicators
Key Activity	Department	Term	Dependency	for Success
1. Conduct annual compliance and enforcement	City Health AQM	Short	Staff Capacity	Conduct annual compliance
inspection audits of Listed Activities.				inspections at all Listed
				Activities with PAELs and at
				least twice in the 5-year AEL
				life cycle.
2. Ensure compliance by Listed Activities with AEL	City Health AQM	Short/medium	Staff Capacity	Pre-compliance/Compliance
conditions and minimum emissions standards through				notices served on 100% of
compliance audits; issuing of compliance notices; and				non-compliant Listed Activities
calling for pollution abatement plans where required.				annually.

OBJECTIVE 4.4: To support City Departments and facilities in maintaining environmental compliance

	Key Activity	Responsible	Term	Dependency	Desired Outcomes/Indicators
		Department			for Success
1.	Provide City Departments and facilities with technical	City Health	On-going	Cooperative	Line departments assisted with
	guidance on air quality matters and legislation in order			governance	maintaining compliance with
	to assist them in maintaining environmental				air quality legislation.
	compliance e.g. City Parks (Crematoria) and Solid				
	Waste Management (Landfill site management) when				
	requested.				

OBJECTIVE 4.5: To ensure NEMA Section 30 incidents⁶ which impact on air quality are investigated and reported on.

	Key Activity	Responsible	Term	Dependency	Desired Outcomes/Indicators
		Department			for Success
1.	Investigate and report on air quality related NEMA	City Health	On-going	Industry and	NEMA Section 30
	Section 30 incidents notified to the City of Cape Town			cooperative	investigations undertaken and
	where the AQM unit is identified as the lead authority.			governance	reported on.
2.	Where incidents reported are due to negligence,	City Health;	On-going	Cooperative	Compliance and
	ensure that the appropriate compliance and	Environmental		governance	enforcement actions initiated
	enforcement actions are initiated.	Management			against negligent facilities.
		Department;			
		DEA&DP			
		Environmental			
		Compliance and			
		Enforcement unit.			

⁶ In terms of section 30(1)(a) of NEMA, an "incident" means an unexpected sudden occurrence, including a major emission, fire or explosion leading to serious danger to the public or potentially serious pollution of or detriment to the environment, whether immediate or delayed.

10 IMPLEMENTATION PROGRAMME

Achieving effective control of air quality will be an ongoing long-term multi-disciplinary process involving the following:

- 10.1 Execution of the activities discussed and outlined in clause 6 of the plan. This includes the identified and responsible department, whether it is short, medium or long term and what resources and dependencies are relevant.
- **10.2** Compile and periodically review the AQMP to guide the process, every five years or when required.
- **10.3** Capacity building and public participation to finalise the AQMP for the City.
- **10.4** Compile and publish the final AQMP, detailing the institutional and scientific approach to air quality management in Cape Town.
- **10.5** Develop a Monitoring and Evaluation approach to track the implementation and outcomes and impacts of each of the activities identified in the AQMP.

11 SITUATIONAL ASSESSMENT

11.1 AMBIENT AIR QUALITY STANDARDS

The NEM: AQA defines air quality that is not harmful to health and well-being through the promulgation of the National Ambient Air Quality Standards (DEA, 2009) and provides the regulatory tools and mandates for government to deliver the desired outcome. **Table 2** below details the South African National Ambient Air Quality Standards (NAAQS):

Pollutant	NAAQS Guideline Concentration	Frequency of exceedance
Sulphur dioxide (SO2) 10-minute averaged data	500 µg/m³ (191 ppb)	526
Sulphur dioxide (SO ₂) Hourly averaged data	350 µg/m³ (134 ppb)	88
Sulphur dioxide (SO2) Daily averaged data	125 µg/m³ (48 ppb)	4
Sulphur dioxide (SO2) Annual average	50 µg/m³ (19 ppb)	0
Nitrogen dioxide (NO2) Hourly averaged data	200 µg/m³ (106 ppb)	88
Nitrogen dioxide (NO2) Annual average	40 µg/m³ (21 ppb)	0
Carbon monoxide (CO) Hourly averaged data	30 mg/m³ (28 ppm)	88
Carbon monoxide (CO) 8-Hour running average	10 mg/m³ (8.7 ppm)	11
Ozone (O3) 8-hour running average	120 µg/m³ (61 ppb)	11
Particulate matter (PM10) Daily averaged data	75 µg/m³	4
Particulate matter (PM10) Annual average	40 µg/m³	0
Particulate matter (PM _{2.5}) Daily averaged data	40 µg/m³	4
Particulate matter (PM _{2.5}) Annual average	20 µg/m³	0
Benzene (C6H6) Annual average	5 µg/m³ (1.6 ppb)	0

Table 2: The South African National Ambient Air Quality Standards (NAAQS)

11.2 AIR QUALITY TRENDS

Air Quality is affected by seasonal variability, as well as regional, trans-boundary, and localised emission sources and fluctuates significantly at each site. **Figures 8 to 11** highlight the PM₁₀, SO₂ and NO₂ air quality trends between 2010 and 2021. Over the past 12 years, air quality in most areas has met the National Ambient Air Quality Standards (annual averages) apart from PM₁₀ in Khayelitsha and Wallacedene in 2021, due to extenuating circumstances, such as sporadic localised pollution events, urban and wildfires, traffic

congestion, associated with calm climatic conditions with temperature inversion events. It should be noted that low data recovery rates at some stations can affect the certainty of trend analysis.

11.2.1 Particulate Matter 10 microns in size (PM₁₀)

Annual average PM₁₀ levels in Cape Town have generally been lower than that required by the 2015 standard (see **Figure 8: Annual PM₁₀ averages, 2010-2021).**

Figure 8: Annual PM₁₀ averages, 2010-2021.

Wallacedene and Khayelitsha experienced significant increases in PM₁₀ pollution since 2016. However, PM₁₀ in Khayelitsha and Wallacedene are the only ambient air quality monitoring sites unable to meet the Annual Average of 40µg/m³ for the 2021 calendar year. The PM₁₀ exceedances have been attributed to the extensive burning of wood by informal food traders operating in very close proximity to the Khayelitsha Air Quality Monitoring Station. Smoke emissions from these open braai fires negatively skew the data. Similar activities are associated with the Wallacedene Air Quality Monitoring Station. Both these stations are close to major roadways and are therefore impacted by vehicular emissions.

The Foreshore ambient air quality monitoring site has recorded a considerable decrease in PM₁₀ between 2011 and 2014, with increases only experienced again since 2015. The UCT/Table Mountain fire of April 2021, significantly contributed to the increase in PM₁₀ in 2021. There are multiple reasons for isolated incidents of poor air quality around Cape Town. These are generally context specific and may be attributed to many social, economic and environmental factors.

Generally, the PM₁₀ monitoring stations that were operational during 2020-2021 showed a marginal decrease in pollutant levels, which could be attributed to a reduction in traffic volumes and economic activities brought about by the COVID-19 hard lock down.

Data gaps are attributed to ageing equipment in the monitoring network that required constant and continuous maintenance. A recapitalisation programme has been embarked upon to replace this ageing equipment.

The City recognises that ongoing urban infrastructure improvements, including road works, and property development, will have a beneficial impact on ambient air quality in the long-term thus also benefitting human health. Unpaved and unsurfaced roads and areas contribute to high concentrations of particulate matter in windy conditions.

Industry and traffic also play significant roles in contributing to air pollution. Furthermore, energy costs, energy supply disruptions (in the form of "load-shedding") and the presence of un-electrified households further exacerbate localised exceedances, as households are forced to burn wood or paraffin for heating and cooking. The burning of tyres and other waste material, as well as veld fires and bio-mass burning, also contribute to air quality exceedances (see **Figure 8: Annual PM**₁₀ **averages**, **2010-2021)**.

11.2.2 Sulphur Dioxide (SO₂)

SO₂ levels in the city are generally low and considerably below the legislated South African air quality standards (see **Figure 9: Annual SO₂ averages, 2010-2021)**.

Most ambient monitoring sites have shown a downward trend throughout the past 12 years, with discrepancies occurring every few years e.g. at Wallacedene and Khayelitsha stations. These could have been attributed to instrument malfunction.

The introduction of mandatory lower sulphur content in diesel fuels, which decreased from 5000ppm to 500ppm with 50ppm being readily available for consumers to use may have contributed to lower ambient SO₂ concentrations being measured.

There was a marked reduction in SO₂ levels at the Bellville South station when a large industrial fuel user switched to a lower sulphur fuel in 2017. The introduction of even tighter fuel specifications known as Clean Fuels 2 was scheduled to come into effect in September 2023 but this has been postponed to July 2027. Further benefits to ambient air quality are anticipated as a result of these changes.

The operation of Eskom's Ankerlig Open Cycle Gas Turbines in Atlantis during periods of load shedding from 2020 to 2021 have likely contributed to the increased SO₂ levels monitored at the Atlantis Air Quality Monitoring station.

SO₂ levels at the Tableview monitoring station have shown a decrease likely due to the suspension of refining operations at the Astron Milnerton Refinery during 2020-2021. New technologies to further reduce SO₂ emissions have been implemented at the refinery, which will be re-commencing operations towards the end of 2022.

Figure 9: Annual SO2 averages, 2010-2021

11.2.3 Nitrogen Dioxide (NO₂)

The lack of NO₂ data recovery and data gaps for the period under review affect the reliability of trend analysis however, year on year fluctuations of NO₂ pollution has occurred over the years (see **Figure 10**: **Annual NO₂ averages, 2010-2021).** This is most likely attributed to climate variability. Significantly, all sites have measured NO₂ levels below the South African Standards over the past 12 years.

The most significant decreasing trends in NO₂ averages were experienced at Khayelitsha and Goodwood in 2021. Bothasig, and Plattekloof have shown a marginal increase in recorded levels which could be attributed to the increase in traffic volumes in these areas.

Figure 10: Annual NO2 averages, 2010-2021

The Foreshore station recorded the highest NO₂ levels in 2021, that could be attributed to high concentrations of vehicle traffic entering the city bowl, port activities as well as weather conditions in this area that cause pollutants to become trapped and recirculated within the dense, built-up areas of the city.

Figure 11 shows the "time varying profile of hourly traffic counts for roads". The profile is based on the readily available permanent Comprehensive Traffic Observation station data over the period of a full year between March 2021 and February 2022. Only stations within an urban setting as identified in the data source were selected. These include a few stations along the provincial arterials in a semi-rural environment. The figure clearly depicts the morning and afternoon weekday peaks that correlate with the diurnal pollution trends (see the diurnal trend graphs for the various air pollutants monitored at the ambient air quality monitoring stations in **Annexure C: Diurnal Trend Graphs**).

Figure 11: Time varying profile of hourly traffic counts for roads

ANNEXURE A: PARTICULATE MATTER ≤10 (PM10) MICRONS TREND GRAPHS

ANNEXURE B: NITROGEN DIOXIDE (NO2) TREND GRAPHS

ANNEXURE C: DIURNAL TREND GRAPHS

Khayelitsha

Wallacedene

